
Large Scale Porting through
Parameterization

David Tilbrook (dt@snitor.sni.ca) − Siemens Nixdorf Information Systems Ltd.
Russell Crook (rmc@snitor.sni.ca) − Siemens Nixdorf Information Systems Ltd.

ABSTRACT

The advent of open systems and standards, while beneficial, has not eliminated the difficulty of
maintaining and transporting large scale software systems across many varying platforms.
In this paper we discuss the need and criteria for a effective porting strategy, one that allows the
rapid and inexpensive retargeting of large scale software systems to many widely varying
platforms while not compromising the integrity of that software on any previously supported
platform.

‘‘Getting Tigger down’’, said Eeyore, ‘‘and not hurting anybody. Keep those
two ideas in your head, Piglet, and you’ll be all right.’’
A.A.Milne, The World of Pooh, 1957, pp216, McCelland & Stewart Ltd.

A key component of any porting strategy is the methodology used to determine, represent, use,
and validate specifications of the target system’s characteristics and site or system dependent
build and run time controls. The standards efforts (e.g., POSIX, ANSI C) are attempting to
eliminate the large number of discrepancies that exist among systems today. Howev er, the
problem will always exist, for reasons that are discussed.
Hence, the main objective of this paper is to present and justify the methodology that we use.
This methodology is in production use on several commercial products in Sietec. Its benefits
include relieving the programmer from the burden of needing detailed knowledge of all the
idiosyncrasies of the various target environments. It is sufficiently powerful that it
accommodates many flavours of BSD, System V, and DOS.

Introduction

Porting is important for a vendor in the open systems
market. There are many reasons for this:
• Rapid advances in technology are creating new

platforms at an astounding rate. It is essential that
existing software be made available on new plat-
forms as quickly as possible.

• Being able to port to existing customer equipment
has clear financial and marketing benefits.

• Heterogeneous networks are becoming both larger
and more common. The vendor’s software prod-
uct must run, and run well, in these environments.

• Large scale portability allows deploying the soft-
ware on platforms with best price/performance.

• The reliability of the code is improved, as the dif-
fering environments provide different checks and
constraints on the software.

• Widespread portability gives a lev erage on testing.
If the software works in some environments but
not others, attention can be more quickly focused
on the relevant areas. Additionally, different envi-
ronments may have different testing tools. Expos-
ing the problem on a platform with better testing
tools can lead to more rapid repair.

All of the above are needed for both mature products
and those currently undergoing large scale develop-
ment. Responsiveness to market need is critical for
competitive reasons in this environment. This
means that the porting process must be fast, inexpen-
sive, and robust. That the process should be fast and
inexpensive should not need any further explanation
or justification. In fact both these criteria will be
sacrificed if necessary to ensure the process is
‘‘robust’’.
To explain what we mean by a ‘‘robust’’ porting pro-
cess, assume that there is a software system called Z
and that there are three platforms (alpha, beta and
gamma) on which Z is to be supported. Z was
ported to alpha in the past, but has not been or can-
not be reconstructed or tested for sometime. Z is
currently being maintained and tested on beta, and is
under continuous development. Z has never been
ported to gamma, but the sales department has told
an important customer that Z already runs on it.
Our problem is then to port Z to gamma, quickly
and completely, while ensuring that:
1) the modifications made to port Z to gamma do

not adversely affect the ongoing development on
beta, yet can be easily and reliably integrated
into the source once the port has been

Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX 1

Porting through Parameterization

completed;
2) development done on beta (also promised by the

salesman) can be added to gamma quickly and
reliably without requiring any additional work
beyond recompilation and test;

3) there is a high degree of confidence that the
modifications made to port to gamma and
enhance Z on beta will work on alpha.

In this paper, we will describe part of our porting
strategy − how we specify the target system’s char-
acteristics − and explore some of the ramifications
for the overall strategy, particularly with respect to
achieving robustness as described above.

Why adherence to standards is not sufficient
The advent of software standards for open systems
(POSIX, ANSI C) has improved the situation, but has
far from solved it. The problem of developing and
maintaining software on multiple platforms persists.
There are many reasons for this persistence:
1) Standards compliance cannot be enforced and is

frequently weak. If non-compliance is found,
the software being ported is forced to adapt, not
the other way around.

2) The standards themselves are often moving tar-
gets, and, despite the best of intentions, cannot
be complete.

3) Any sizable system requires the specification of
a large number of controls and settings that
depend of factors far beyond the scope of any
standard (e.g., −O vs. −g, the directory into
which the system is to be installed).

4) Standards usually define a minimal system and
we need to be able to use extra ‘‘non-standard’’
facilities offered by the platforms that might
improve performance or security.

5) There are still a large number of potential clients
using non-standard platforms, that we do not
want to ignore.

Hence we believe that adherence to standards is not
sufficient, thus, the problem of the specification,
determination, use, and validation of the platform
and configuration dependent variations between sys-
tems must be solved.
The next section discusses our environment, princi-
ples we believe to be important, examples of specifi-
cations that must be handled, some constraints on a
solution, and the basics of our approach.
Some of this work parallels the goals and objectives
of Larry Wall’s metaconfig, and Glenn Fowler’s
#include <feature/*.h> systems. However, our
requirements and constraints are sufficiently differ-
ent to require yet another solution, as will be dis-
cussed later in the paper.

Our environment

A brief description of our environment and the chal-
lenges to be faced:
We hav e approximately a dozen software engineers
working on various libraries, daemons, and utilities
comprising some 2000 C source files and 500,000
lines of code. The developers tend to do their devel-
opment and testing on only one or two of the avail-
able platforms.
Over the past three years, there has been an average
of 50 files changed a day.
These changes have been made and tested on all of
the internal platforms averaging six different plat-
forms, and nine different configurations.
In the past year, the software has been moved to ten
new environments (six in the last four months).
Some of these ports have been on very short notice.
Finally, most development is done on platforms that
are not (officially) supported in the released product.
Assuring functional consistency and robustness is a
challenge. We require a consistent and comprehen-
sive porting strategy that works well within this
environment because we have to ‘‘port’’ and test
fifty deltas a day to nine different configurations,
while ensuring that the changes will not break any of
the other dozen or so supported platforms.

How we solved the problem

Principles
The following are fundamental principles of our
porting strategy:
1) We do not port the software itself; instead, we

configure a platform base or portability layer on
which all code is based.

2) Testing must be frequent and widespread. If the
portability layer is correctly configured and
changes to product software uses that layer cor-
rectly, then a successful test of a change on a sin-
gle platform should be sufficient to ensure that
the change will be semantically correct on all
platforms. Obviously testing on only one plat-
form is not sufficient in practise, therefore we test
all nine standard configurations continuously.

To facilitate using these principles, we also mandate
• The use of exactly the same application source

files for all platforms (the ‘‘one true source’’),
which in turn means

• avoiding #ifdef in application code − especially
those that deal with system dependencies. This
applies to application header files as well; sys-
tem dependent values should be inherited from
the platform base.

2 Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX

Porting through Parameterization

Types of problems encountered
There are many different types of platform differ-
ences that give rise to porting difficulties. Some
are listed below, with common examples:
Include file problems: Differences in location
information (are the open() flags in file.h, fcntl.h,
or even provided at all) incompatibilities amongst
vendor headers (multiple, distinct definitions of
NULL), ordering dependencies due to lack of
idempotency, etc.
Different names for the same function: strchr()
vs. index(), bcopy() vs. memcpy(), etc.
Standard libraries that aren’t: For a program
that uses terminal capabilities, do you need
−ltermcap, −lterminfo, −lcurses, or some combi-
nation?
Functions that have different types on different
platforms: char* sprintf (BSD) vs. int sprintf (Sys
V)?
Presence or absence of a capability: Is lstat()
available? Does rm of a symbolic link delete the
link or the file behind it?
Runtime environment: Is the user’s login name in
$LOGNAME, $USER, or even available.
Construction differences: Is ranlib available? Is
__STDC__ defined, and can you believe it if it is?
Bugs: If the rename() function exists, does it work,
and how well does it work? [1]
Differing tool interfaces and semantics: Is the
debugging flags for cc, −g or −gx? Is the ar −o
flag supported?

Attributes of a Viable Solution
There are several attributes that a solution within
this problem domain must possess:
Extensibility: It has been our experience that
ev ery new port introduces a new variation that has
not been seen in any of the previous ports. To pre-
serve portedness of old systems over time despite
changes we must therefore extend capabilities
without breaking old ports.
Recreatable: We must preserve port information
for old systems over time so that we can recreate
that port or extend as required as new requirements
arise.
Locale independence: The mechanism must be
host, site, and user independent. For example, we
construct our DOS version on a Unix system. This
implies that no aspect of any specific host is
needed to maintain this mechanism.
Ease of use: Given the rapidity with which new
ports must be done, it is necessary to have a mech-
anism that allows easy addition or corrections of
these parameters. This also encourages ready
experimentation.

The extensibility criteria dictates that this cannot
be a fully automated process, with all relevant
information determined at compile or run time.
Additionally, some values cannot be determined
automatically, as they are almost a matter of taste
and local custom. Such preferences should be
specified with the same mechanisms as the plat-
form constraints.

Configuring the Portability Layer

The foundation of the portability layer is a set of
configured header and data files. The portability
layer also contains a compatibility library, run time
configuration tools and techniques and data, and a
highly configurable construction system used to
perform system constructions, but all these compo-
nents are built using the foundation.
The portability layer foundation is built from the
following ingredients:
1) A parameters file for the target system to be

constructed.
2) A set of prototypes for files to be configured.
3) A program called strfix which, for a given pro-

totype and the parameters file produces the
configured information.

Descriptions of each of these ingredients follows:
The parameters file: The parameters file contains
the configuration or discrepancy specifications as
name / value pairs. The name is a upper case C
identifier, and the value is an arbitrary string.
Inclusion of other parameter files is supported to
allow the inheritance of common or base systems
values, as well as other shared information. An
annotated example is provided in a later section.
Multiple specifications for a given name are
allowed, with the last specification taking effect.
Prototype files: A prototype is a standard text file
with embedded strings of the following forms:

@<name>@
@<name><operator><argument>@

where <name> is a possible parameters file set-
ting, and <operator> is used to indicate special
interpretation such as ‘‘:default’’ to specify a
default value.
strfix: The program strfix reads a prototype file,
replacing embedded @<name>...@ strings with
corresponding values from the parameters file. All
other text is passed through unchanged.

The process
Creating the portability layer foundation is simply
a matter of applying strfix against all the prototype
files using the parameters file to produce a set of
configured files which are copied to their proper
locations.

Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX 3

Porting through Parameterization

Validation
Validating the portability layer is done, in part, by
using it to compile and install the portability layer
tools, which are then applied to rebuild itself.
However, this is not an exhaustive test, conse-
quently there are a number of regression tests that
attempt to provide complete coverage.
This process is obviously dependent on the correct
functioning of the strfix program. To minimize
the chances that a new platform will force a
change to strfix, its functioning has been kept very
simple and easily tested.

Requirements of the construction system to
support this strategy

This strategy has obvious implications for both the
use of header files and the characteristics of the
construction system. These will be addressed in a
later section.

Prev ention of gratuitous timestamp propaga-
tion

Obviously, every file in the portability layer
depends upon the parameter file. Just as obvi-
ously, lots of programs depend on the portability
layer. Therefore, unless other steps are taken, a
cosmetic change in the parameters file would result
in the complete and gratuitous reconstruction of
the entire system.

Aids in preparing the parameters file
Whereas other approaches try to probe the system
to determine the settings of various system values
(and then automatically use these values), we do
very little interpretation of the host environment,
other than a program to extract required manifests
from sys/param.h — a file we are anxious to avoid.
Such probe programs are particularly vulnerable to
unanticipated values (or new parameters) forcing a
coding change in the probe program, which then
makes it difficult to assure that the new program
would work correctly on previously ported sys-
tems.
Nearly all of our values depend on the parameters
file. Instead, we have tools to help the user to pre-
pare and correct the parameters file.

Construction system implications
We are highly dependent upon having a construc-
tion system that will guarantee that a construction
rule will be automatically applied whenever it is
necessary − dependencies are automatically
tracked and a changed dependency list or recipe
forces reapplication.

The second requirement is that we adopt a pro-
gramming style that uses our generated header
files in lieu of the system provided header files.
If a discrepancy arises in a standard host header
file, this ensures that we do not have to change the
host header file. Hence we provide header file
wrappers for all system header files that are used
in the application code.
Note that this provides the necessary insulation
from system dependencies that allows the pro-
grammers to ignore the underlying header struc-
ture. They need only use the generated header
files rather than the system headers directly.

Annotated Examples

To describe in full the parameterization system
would require the inclusion of a lot of documenta-
tion. Therefore, the following brief annotated
examples are presented to clarify some of the
issues presented in this paper1.
The following is the parameters file for the opti-
mized, X11R4 BSD4.3 side configuration of our
product.

SID @(#)mips4.5b-nix 1.18 ...

include DefaultConf
include Sites/snitor
include Platforms/mips_4.3b
CONFIG mips
C_OPT −O −systype bsd43
HOSTNAME helium
OPTIONS DTMACH NO_MAN
RDIST # nixtdc:/u/qtree/mips
XsysVersion X11R4

The include lines act as one would expect. Note
that the last setting specified is the one that takes
affect, therefore the setting for OPTIONS will over-
ride those specified in the default specification file
DefaultConf. Also note the presence of an SCCS
SID line. This file is source and is subject to all the
normal source controls. This file is the only speci-
fication used to parameterize the construction and
this file is the only one that will differ from source
used to build any other configuration. To build and
install the specified configuration the only required
initial human action is to specify this file to the ini-
tial configuration setup command. Once that spec-
ification has been stated, the file is an inherent part
of the source and is subject to the same depen-
dency tracking and rules as any other source file.
A change to the file itself or any of its component
files will result in the rerunning of any of the con-
struction processes that use it as an input.

1Some example lines are truncated to ensure that they
fit within the two column format requested by the pro-
gramme committee.

4 Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX

Porting through Parameterization

The following lines are a subset of the Tr eeConfig
prototype file which itself is a strfix input file used
to configure the construction process.

SID @(#)TreeConfig.D 1.11 ...
This file configured from @__FILE__@
OPTIONS @OPTIONS@
@{ @BLIT:false@
@| true

BLIT true
@| false
@| *

@! BLIT(@BLIT@) must be true, ...
@}
XsysVersion @XsysVersion@

When this file is processed by strfix, giv en the
example parameters file, the following will be out-
put:

SID @(#)TreeConfig.D 1.11 ...
This file configured from /n3/...
OPTIONS DTMACH NO_MAN
XsysVersion X11R4

The @OPTIONS@ and @XsysVersion@ in the origi-
nal strings in the prototype file have been replaced
by the settings specified in the parms file. The
‘‘@{’’ through ‘‘@}’’ lines are a case statement
based in the value of ‘‘@BLIT:false@’’. If the
BLIT parameter is ‘‘true’’, ‘‘false’’ or unspecified
(defaults to ‘‘false’’) the lines immediately follow-
ing the ‘‘@| true’’ or ‘‘@| false’’ line are processed
up to the next ‘‘@|’’ or ‘‘@}’’ line. The ‘‘@|’’
arguments are one or more shell-like regular
expressions, hence ‘‘*’’ will match everything,
thereby processing any value that is not ‘‘true’’,
‘‘false’’, or unspecified. The ‘‘@!’’ string causes
strfix to abort with a diagnostic thereby providing a
quick and fool-proof check that the parameter is
one of the legitimate values.
This is not an untypical example of a prototype
file. Many are not C source and many are them-
selves used to configure other aspects of the sys-
tem. The BLIT parameter is also a good illustra-
tion of a fundamental principle of our approach. It
is used is one and only one place in the prototype
files and it need not appear in any parameters file
other than one for a system that indeed supports a
BLIT. Thus no previous configuration file needs to
be changed. Furthermore, the addition of this
parameter will not change any existing generated
file unless the BLIT parameter’s value is true,
thereby ensuring that no previous port is broken.
A typical parameters file, when the includes are
unfolded, contains the settings for about 130
parameters. The number varies according to the
target system as only variations for the default val-
ues are usually specified in the parameters files
themselves and new parameters are created during
most ports. This sounds intimidating, but for the

most part just including the base system file (e.g.,
bsd4.[123], unix5.[0-4]) is sufficient to get started.
The validation process quickly finds inappropriate
settings that are fairly easily fixed by adding the
appropriate override to the platform file. To list all
the parameters is beyond the scope of this paper.
However, they can be roughly partioned into the
following groups:
Site information: the site addresses and phone
numbers used within various packages to build
new source files;
System configuration: the name of the system,
the flags to be used to compile it (e.g., −O vs. −g);
the target location for the installed product; the
name to be used to access the installed product
(frequently not the same as the as the target
location2)
Header file mappings: the header file used to
retrieve various types, settings, defines, etc.;
tools names and availability: the name of the
compiler, loader, yacc, etc. to be used; the names
of various facilities when full path is desirable and
sometimes changes (e.g., rsh vs. rcmd);
Compiler characteristics: Can one use proto-
types? Can one use prototypes for function point-
ers? Many compilers can do one but dump core
when one attempts the other. Is char signed or
unsigned? Tools are provided to help the installer
find out answers to some of these questions, but
we never depend on them correctly working. How
does one specify the use of an alternative C pre-
processor?
Routine mappings: which routine should be used
to copy memory? to move memory? Is there a
dup2 routine?
Supported bugs: Does rename work? and so on.
Before leaving this examples section, our solution
to a particularly difficult header file mapping is
illustrated.
The specification of which header files contain the
definitions of the tm and the timeval structs is one
which cannot be based on loose specification of
the base system (e.g., bsd vs. unix5). The two
structs are frequently used in the same source and
the inclusion of the appropriate header files (e.g.,
sys/time.h and time.h) is not a matter of simply
#includeing both. In some situations one includes
the other and the second is not idem-potent, that is
may not be included twice. On other systems both
files have to be included in a specific order and
may or may not require the previous inclusion of
sys/types.h, which itself is sometimes not idem-
potent.

2We test systems before we install them.

Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX 5

Porting through Parameterization

We solve this problem by creating our own
envir/time.h header file which contains the specifi-
cation of both required structs, plus those proto-
types than are sometimes not specified. This is a
configured file that uses two parameters:
TIMEVAL_H and TM_STRUCT_H which respec-
tively name the header files to be used to access
the definitions for the timeval and tm structs
respectively, with one minor caveat. If one header
file enforces the inclusion of the other, the other is
assigned the empty string. The following lines are
included as part of our prototype time.h file:

/*
* include our own idem-potent
* types.h wrapper
*/
#include<envir/types.h>
/*
* include timeval header
* if necessary
*/
@TIMEVAL_H#i@
/*
* header containing struct tm
* if not same as above
*/
@{ X@TM_STRUCT_H:sys/time.h@X
@| X@TIMEVAL_H@X
@| *

@TM_STRUCT_H#isys/time.h@
@}

The ‘‘@<name>#i...@’’ string causes strfix to out-
put a ‘‘#include’’ line if the parameter is defined or
a default value is specified. The above may look
baroque, but the resulting file just consists of the
comments and the required includes. Also note
the absence of #ifdefs.

Evaluation.

How does this strategy meet the criteria given ear-
lier?
• The simple text file is portable, and strfix is

simple and almost immune to environmental
idiosyncrasies.

• We can add new parameter files that allow us
to use old configurations with new perturba-
tions. For example, a quick look at the
machine (or its documentation) will indicate
whether we should start with a BSD 4.x base,
or System V, or something else.

• Usually no application C code or header file
changes are required. We will not discuss cre-
ating of a portability library to compensate for
system deficiencies; it is a simple application
of the parameter file to select or provide appro-
priate functionality or provide name mapping.

• In the last year, we hav e ported our major

software product to ten new platforms. Six of
these were in the last four months, for an aver-
age of one port every three weeks. These ports
included our first encounters with X11R4 and
System V Release 4. The porting itself took an
av erage of a day, with testing taking a week.
During these porting efforts, development
efforts continued at their normal rate on the
application code.

• Through this mechanism we have virtually
eliminated the use of #ifdefs in C code. Dur-
ing the last year, with its ten ports, there were
no #ifdefs added anywhere in the application
code or header file. Those #ifdefs that remain
are either in taste or capability selection (e.g.,
build with debugging code in or out) or are
based on settings in the parameter file. When
it is required to alter a setting for a specific
platform or host, the parameter file is changed,
and not the C code. The importance of this to
our efforts should be obvious:

+ Since we do not change the code, we virtu-
ally eliminate the possibility of breaking
an old port.

+ By not creating platform-specific blocks of
code, the regression tests remain accurate.

• The ability to use these techniques in a cross-
compilation environment allowed porting the
code to a DOS/Windows environment without
forcing an unfamiliar development environ-
ment on the developers. A probe-based mech-
anism would not have readily permitted this.
As importantly, it permitted application of
multiple developers to the porting effort with-
out jeopardizing source code consistency.
Although this effort did in fact require substan-
tial code changes due to the radical environ-
mental differences between DOS and Unix
(filename syntax, environment variables,
unusual C environment), these changes were
applied to the one true source for both the
DOS and Unix environments, and then contin-
ually tested in both environments on an ongo-
ing basis.

How well does this work?
Very well indeed. This approach has succeeded
in all Unix platforms tried to date (over fifty at
last count). Our approach is now being used to
support our application code in a DOS/Windows
environment.
Products at other Siemens sites have adopted this
approach by converting their software to use our
portability layer. One such product, which had
previously only worked on one platform was
ported to three new platforms in two months.

6 Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX

Porting through Parameterization

The application developers are, in our experi-
ence, very happy to suffer the style and coding
practises in exchange for not having to under-
stand the arcane topology of all the systems3

encountered.
Most ports of our software (up to and including
running of the automated regression test suite) do
indeed take only a day or so. The exceptions
occur when the applications have made non-
portable assumptions (e.g., using X11R3 and
porting to a platform with X11R4). Even in these
cases, the ability to rapidly mutate the platform
base layer to adapt to the new environment with-
out invalidating previous ports4 is of great bene-
fit.
It is worth noting another large benefit − any-
thing that is a text file can make use of the plat-
form base. This obviously applies to applica-
tions written in languages other than C, but it
also applies to shell scripts, construction system
recipes, application data files (e.g., X resource
files), etc.
It is worthwhile casting our recent experiences
into the Z software mold mentioned previously,
with past platforms alpha which may not be
testable for a while, present platforms beta on
which most ongoing development occurs, and
future platforms gamma. Platforms that were
gamma systems have become alpha systems
since the equipment was here for short term eval-
uation only; some of the future gamma systems5

will be new corporate platforms, and will
become beta platforms. Some of the alpha sys-
tems are now beta systems, as equipment has
been repaired or returned. During all this activ-
ity, software development continued at close to
its normal rate.
In such an environment of flux, it is clear that we
cannot afford to freeze application development,
port the code by modifying it and then test it on
the relevant platforms. Attempting to modify the
application for porting purposes while letting
application development proceed has obvious
quality problems. We are convinced that the
more usual approaches would not suffice in our
environment.

3This became very important during the DOS/Win-
dows work. Running the regression tests under
DOS/Windows was all the contact most of the devel-
opers had with the DOS environment.

4In this case, the changes have to be tested both in an
old (X11R3) and new (X11R4) environments to be con-
sidered safe.

5We hav e three of these anticipated in the next six
weeks.

What would be done differently?
• Documentation of an individual parameter

and the expression of its use is currently
weak. This is especially important since
each new port (so far) has introduced new
parameters.

• Comprehensive validation of a parameter’s
setting is sometimes delayed until late in a
system’s construction due to prerequisites.
We need a better framework for specifying
and executing parameter regression tests.

• Similarly there needs to be an easy to use
framework for adding aids to help the user
determine the correct settings, although most
of the time a simple guess is sufficient.

Other Approaches

Config
Unfortunately, to many this paper would
appear to be incomplete without mentioning
what they believe to be a viable approach to the
problem addressed by this paper, that is Larry
Wall’s config and meta-config systems. config
is sufficient for the distribution of a small
share-ware system to users who are willing to
invest the required time and effort to fix it
when it goes wrong. However, config cannot
be considered as the mechanism to be used to
do large professional systems due to a number
of deficiencies.

• It requires user interaction, which is time-
consuming and error-prone, and most
importantly cannot be expressed as an
administered source file, something that
we believe to be essential. It also rules out
the possibility of rerunning the configura-
tion stage as part of any construction,
again something that we believe is essen-
tial.

• The use of probes to determine the appro-
priate settings for the equivalent of our
parameters is highly error prone and when
in error are difficult to fix without jeopar-
dizing previous ports. Frequently the
probes themselves are constructed with
implicit assumptions about the target sys-
tem. When these assumptions are incor-
rect major surgery is often required. The
use of probes also ensures that the infor-
mation used to construct a system cannot
be managed historically. Their evaluation
depended on the state of the host system at
the time config was executed therefore its
replication cannot be guaranteed. Further-
more this dependence on the host system
eliminates the possibility of doing cross
compilation, something that we must have

Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX 7

Porting through Parameterization

to adequately deal with inadequate sys-
tems such as DOS. Our approach is to
provide probes that may be used to deter-
mine and/or test the appropriate value for a
parameter, but to never incorporate its run-
ning as part of the construction process.

• The addition of a new parameter or the
correction of an old one is difficult. Our
experience with config is limited6, but con-
fig users who do use it stated that the
actual products of the config process are
two configured files (one for C and the
other for sh). This means that the simple
correction of a parameter will require the
entire recompilation of the complete sys-
tem, something that one cannot afford
when running four to five thousand com-
piles across nine different platforms.

Fo wler’s #feature mechanism
Glenn Fowler, the creator of the fourth make,
has an approach to the configuration process
that to our knowledge and that of one of his
colleagues not been documented. Briefly, the
use of:

#include <feature/name.h>

within a C program, and the dynamic depen-
dency tracking of make4, will trigger, if neces-
sary, the creation of the named header file by
running the associated probe. This shares
some of config’s weaknesses with respect to the
dependence on automated probes and the host
environment, but avoids some of config’s major
flaws. As stated the system is, as yet, undocu-
mented but shows promise.

Conclusions

Porting is extremely important to us, and our
techniques have proven to be profitable for us.
This paper addresses only one aspect of the
porting problem − that of the specification of
parameters for a system. We hav e been led to
this strategy by the requirements of today’s
environment of open systems and need of rapid
ports. The parameterization and characteriza-
tions of systems in this way has proven suffi-
cient to handle all porting problems we have
seen in the past ten years. Indeed, expectations
are now so high we have the situation that all
ports are expected to be done in a day, even

6One of the authors tried to use it to install rn but
gave up when it failed. The cost of trying to fix a
much hacked 1800 line shell script was considered
to be far more than the benefits of being able to use
rn. For comparison we normally use a ten line text
file to install 800 programs and 30 libraries.

though they may involve substantial rework
and testing to deal with new challenges.

Bibliography

[1] David Tilbrook, rename(‘‘open’’, ‘‘swing-
ing_to_and_fro’’); EurOpen Newsletter,
1991.

[2] David Tilbrook & John McMullen, Wash-
ing Behind Your Ears: Principles of Soft-
ware Hygiene, EurOpen Nice Conference,
Oct. 1990.

Author Information

By the time this paper is published, David
Tilbrook will have started his new position as
Vice President, Technology at CS Computing
Services in Toronto. For the last three years he
has been a consulting engineer at Sietec and
the manager of the Software Hygiene Research
group. His primary research interest is Soft-
ware Hygiene and the Software Process. David
has served as the programme chair for four
EurOpen conferences, a Usenix conference and
the Software Management Workshop, and is
the chair for the 1993 Uniforum Canada con-
ference on Software Hygiene. In 1985, David
was awarded an Honourary Lifetime member-
ship to EurOpen (and a much treasured Swiss
army knife).

Russell Crook has worked at Sietec since
1988 as a Project Leader within the Imaging
and Data Storage groups. In 1974 he was
chess expert of the world computer chess
championship team that created tree frog.

Russell may be reached at: Sietec Open
Systems Division, 2235 Sheppard Avenue East,
Suite 1800, Willowdale, Ontario Canada M2J
5B5; or at rmc@sni.ca. David’s new address is
unknown at this time due to the fact that his
company is relocating to as yet at unknown
location in downtown Toronto but he may be
contacted via Russell or dt@sni.ca for the time
being.

8 Summer ’92 USENIX − June 8-June 12, 1992 − San Antonio, TX

